

XL-5050RGBC-SK6812B**技术数据表 Technical Data Sheet****5050 幻彩 贴片式发光二极管****特点 (Characteristics) :**

- * 外观尺寸 (L/W/H) :5.0*5.0*1.6mm
outline Dimensions (L / w / h): 5.0*5.0*1.6mm
- * 发光颜色及胶体: 七彩幻彩/透明胶体
Luminous color and colloid: Colorful magic/Transparent colloid
- * 环保工艺符合 ROHS 要求
Environmental protection products Complied With ROHS Directive
- * 湿气敏感性等级 (MSL) :5 级
Moisture sensitivity level (MSL) : 5 levels
- * EIA 规范标准包装
EIA standard packaging
- * 适用于 SMT 贴片自动化生产
Suitable for SMT automatic production
- * 适用于红外线回流焊制程

模型图仅供参考

应用领域 (Product application) :

- * LED 全彩发光字灯串
Led full-color luminous word lamp string,
- * LED 全彩模组
led full-color module
- * LED 幻彩软硬灯条, LED 护栏管
Led magic color soft and hard light strip, LED guardrail tube
- * LED 外观, 情景照明
Led appearance, scene lighting
- * LED 异性屏
Led heterosexual screen
- * 各种电子产品, 电器设备跑马灯
All kinds of electronic products, electrical equipment, runninglights

产品概述: Product overview:

SK6812B 是一个集控制电路与发光电路于一体的智能外控 LED 光源。其外型 与一个 5050LED 灯珠相同，每个元件即为一个像素点。像素点内部包含了智 能数 字接口数据锁存信号整形放大驱动电路，电源稳压电路，内置恒流电路， 高精度 RC 振荡器，输出驱动采用专利 PWM 技术，有效保证了像素点内光的 颜色高一致性。芯片采用单线通讯方式， 采用归零码的方式发送信号。芯片在上 电复位以后，接受 DIN 端打来的数据，接受够 24 bit 后， DOUT 端口开始转 发数据，供下一个芯片提供输入数据。在转发之前， DOUT 口一直拉低。此时芯 片将不接受新的数据， 芯片 OUTR、OUTG、OUTB 三个 PWM 输出口根据接收到 的 24 bit 数据，发出相应 的不同占空比的信号， 该信号周期在 4 ms。如果 DIN 端输入信号为 RESET 信号，芯片将接收到的数据送显示，芯片将在该信号 结束后重新接受新的数据，在接受完开始的 24 bit 数据后，通过 DOUT 口转发 数据，芯片在没有接收到 RESET 码前，OUTR、OUTG、OUTB 管脚原输出保持不 变，当接收到 80μs 以上低电平 RESET 码后，芯片将刚才接收到的 24 bit PWM 数据脉宽输出到 OUTR、OUTG、OUTB 引脚上。除 DIN 外， 芯片额外设计 了 FDIN 输入端， 接收上一个芯片的 DIN 数据，也就是上上一个芯片的 DOUT 数据。级联时， 如果某一 颗芯片损坏，不影响数据传输，后续芯片仍能 正常接收数据。LED 具有低电压驱动，环保节能， 亮度高，散射角度大，一致 性好， 超低功率，超长寿命等优点。将控制电路集成于 LED 上面， 电 路变得 更加简单，体积小，安装更加简便。

SK (6812) is an intelligent external control LED light source integrating control circuit and luminous circuit. Its appearance is the same as a 5050 LED lamp bead, and each element is a pixel. The pixel contains an intelligent digital interface data latch signal shaping and amplification drive circuit, a power supply voltage stabilizing circuit, a built-in constant current circuit, a high-precision RC oscillator, and a patented PWM technology for output drive, which effectively ensures the high consistency of the color of the light in the pixel. The chip adopts single line communication mode, and sends signals by returning to zero code. After the chip is powered on and reset, it receives the data from the DIN terminal. After receiving enough 24 bits, the DOUT port starts to forward the data for the next chip to provide input data. The DOUT port is always pulled down before forwarding. At this time, the chip will not accept new data. The chip OUTR, OUTG, and OUTB PWM output ports will send corresponding signals with different duty cycles according to the received 24 bit data. The signal cycle is 4 ms. If the input signal at the DIN end is a RESET signal, the chip will send the received data to the display, and the chip will accept new data after the end of the signal. After receiving the initial 24 bit data, the chip will forward the data through the DOUT port. Before the chip receives the RESET code, the original output of OUTR, OUTG, OUTB pins will remain unchanged. When the chip receives the low-level RESET code above 80 μ s, The chip outputs the 24 bit PWM data pulse width just received to OUTR, OUTG and OUTB pins. In addition to DIN, the chip is additionally designed with an FDIN input terminal to receive the DIN data of the previous chip, that is, the DOUT data of the previous chip. When cascading, if a chip is damaged, data transmission will not be affected, and subsequent chips can still receive data normally. LED has the advantages of low voltage drive, environmental protection and energy conservation, high brightness, large scattering angle, good consistency, ultra-low power, and ultra long life. The control circuit is integrated on the LED, which makes the circuit simpler, smaller and easier to install.

产品特征：Product characteristics

- 所有元件集成在产品封装中，不需要任何其他外围元件构成一个完整的外控像素点。
- All components are integrated in the 5050 package, and no other peripheral components are required to form a complete external Controls pixel points.
- 断点续传，单颗 IC 或灯珠损坏不影响后续整体显示效果。
- Continuous transmission of breakpoints. The damage of a single IC or lamp bead will not affect the subsequent overall display effect.
- 智能反接保护，12V 电源接反时不会损坏元器件。
- Intelligent reverse connection protection, and components will not be damaged when 12V power supply is connected reversely.
- 内置信号数据整形电路，接受完本单元数据自动将后续数据整形输出，保证线路波形畸变不会累加。
- Built in signal data shaping circuit, automatically shaping and outputting the subsequent data after receiving the data of the unit. It can be proved that the line waveform distortion will not be accumulated.
- 灰度调节电路（256 级灰度可调） ●Gray scale adjustment circuit (256 levels of gray scale can be adjusted)
- 完成 16777216 种颜色的全真色彩显示
- Gray scale adjustment circuit (256 levels of gray scale can be adjusted)
- 端口扫描频率 2KHz/s。
- The port scanning frequency is 2KHz/s.
- 串行级联接口，能通过一根信号线完成数据的接收与解码。
- Serial cascade interface, capable of receiving and decoding data through a signal line.
- 双输入串行级联接口(DIN. FDIN.)
- Dual input serial cascade interface (DIN. FDIN.)
- 任意两点传传输距离在不超过 5 米时无需增加任何电路。
- When the transmission distance between any two points does not exceed 5 meters, no additional circuit is required.
- 当刷新速率 30 帧/秒时，级联数不小于 1024 点。
- When the refresh rate is 30 frames/second, the number of cascades shall not be less than 1024 points.
- 数据发送速度可达 800Kbps。
- The data transmission speed can reach 800Kbps.
- 输出恒流值 8.5mA，便于降低内置灯珠功耗
- The output constant current value is 8.5mA, which is convenient to reduce the power consumption of the built-in lamp bead
- 内置高精度和高稳定性振荡器
- Built in high precision and high stability oscillator
- 光的颜色高度一致，性价比高。
- The color of light is highly consistent and cost-effective.
- 采用高压CMOS工艺，12V单点单控
- High voltage CMOS process, 12V single point single control
- 默认上电不亮灯
- Default power on does not light up

目录

Catalogue

电性参数

Electrical Characteristics.....5

典型特性曲线

Typical Characteristic Curves.....11

可靠性实验

Reliability Test Items And Conditions.....12

外形尺寸

Outline Dimensions.....13

包装

Packaging.....14

焊接指导

Guideline for Soldering.....16

使用注意事项

Precautions.....18

电性参数

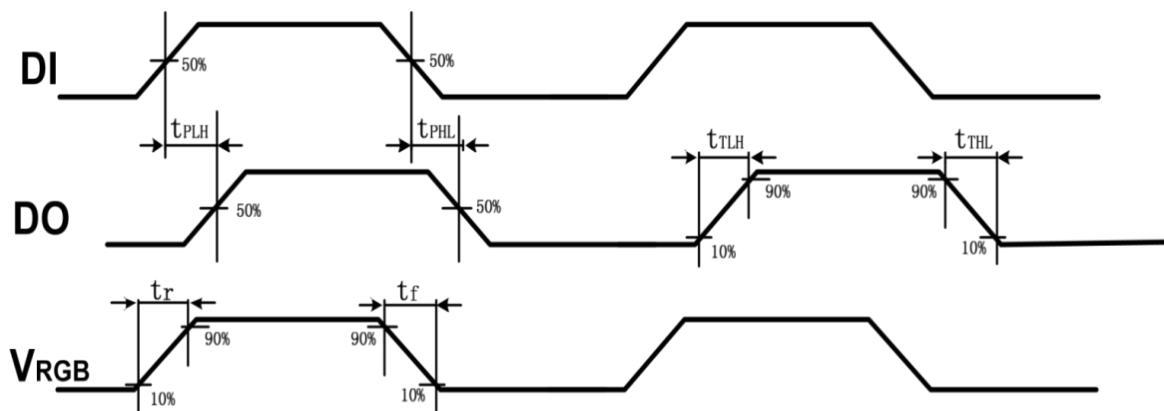
Electrical Characteristics

极限参数 (Ta=25°C) Absolute Maximum Rating (ta=25 °C)

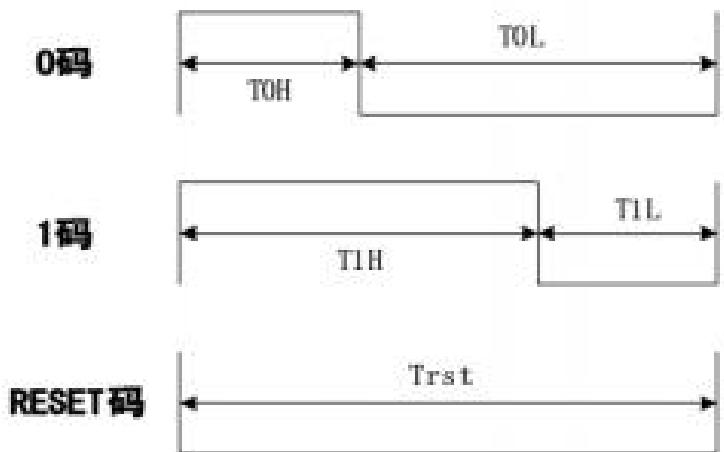
参数 Parameter	符号 Symbol	最大额定值 Maximum rating	单位 Units
供电电压 Supply Voltage	Vin	9-14	V
逻辑输入电压 Logic input Voltage	Vds	-0.5~Vdd+ 12	V
输出端口耐压 Output port withstand voltage	Vi	14	V
工作温度 working temperature	Topt	-40~+85	°C
储存温度 Storage temperature	Tstg	-40~+85	°C
ESD 耐压 ESD withstand voltage	Vesd	4K	V

光电参数 (Ta=25°C) Optical-electrical parameter (ta=25 °C)

参数名称 Parameter	颜色 Colour	符号 Symbol	测试条件 Test Conditions	最小值 Min	典型值 Typ	最大值 Max	单位 Unit
光强 Light intensity	红 red	IV	IF=8.5mA	500	-	700	mcd
	绿 green			1000	-	1500	
	蓝 blue			300	-	500	
主波长 Main wavelength	红 red	λP	IF=8.5mA	620	-	625	nm
	绿 green			520	-	530	
	蓝 blue			460	-	475	
半光强视角 Half light angle	-	201/2		-	120	-	Deg


开关特性 (Ta=-40 ~ +85 °C)

Switching characteristics (ta=-40 ~ +85 °C):


参数 Parameter	符号 Symbol	最小值 Min.	代表值 Typ.	最大值 Max.	单位 Unit	测试条件 Test conditions
数据传输速率 Data transmission rate	FDIN	---	800	1100	kHz	---
传输延迟时间 Transmission delay time	tPLZ	---	---	200	ns	---

电气参数 (Ta=-40 ~ +85 °C) Electrical parameters (ta=-40 ~ +85)

参数 Parameter	符号 Symbol	最小值 Min.	代表值 Typ.	最大值 Max.	单位 Unit
芯片电源电压 Chip power supply voltage	VDD	9	12	14	V
RGB 输出电流 RGB output current	Io11	-	8.5	-	mA
高电平输入电压 High level input voltage	VIH	2.3	-	-	V
低电平输入电压 Low level input voltage	VIL	-	-	1.9	V
PWM 频率 PWM frequency	FPWM	-	4	-	KHZ
静态功耗 Static power onsumption	LDD	-	0.23	-	mA

1、时序波形图 :Time sequence oscilloscope

输入码型: Input code type:

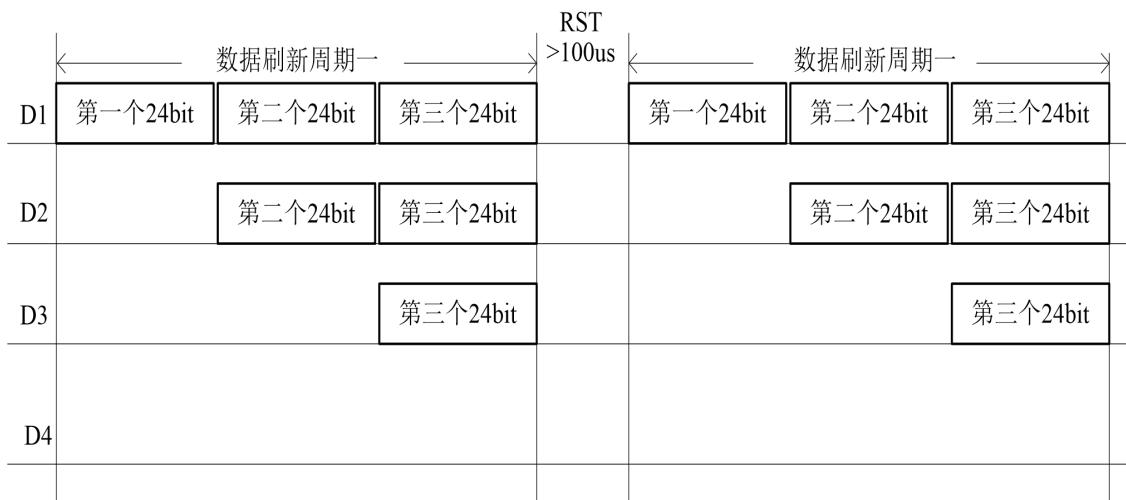
2、码型时间: Code type time

时序表名称 Timeline name		最小值 Min.	典型值 Typical value	最大值 Max.	单位 Unit
T	码元周期	1.2	---	---	μs
TOH	0 码, 高电平时间	---	0.3	---	μs
TOL	0 码, 低电平时间	---	0.9	---	μs
T1H	1 码, 高电平时间	---	0.9	---	μs
T1L	1 码, 低电平时间	---	0.3	---	μs
TRST	Reset 码, 低电平时间	>200	---	---	μs

注 1: 写程序时, 码元周期最低要求为 0.9us;

Note 1: When writing the program, the minimum code cycle is 0.9us;

2: 0 码、1 码的高电平时间需按照上表的规定范围, 0 码、1 码的低电平时间要求小于 20us;


2: The high level time of code 0 and code 1 shall be within the range specified in the table above, and the low level time of code 0 and code 1 shall be less than 20us;

3、协议数据格式: Protocol Data Format

Trst+第一颗芯片 24bits 数据+第二颗芯片 24bits 数据+.....+第 N 颗芯片 24bits 数据+Trst 24bit 灰度数据结构: 高位

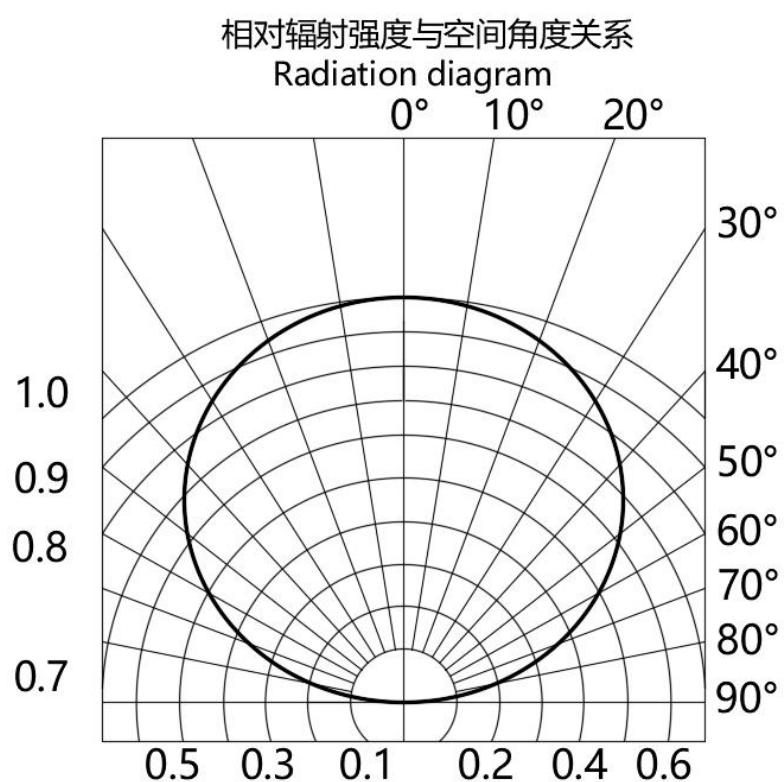
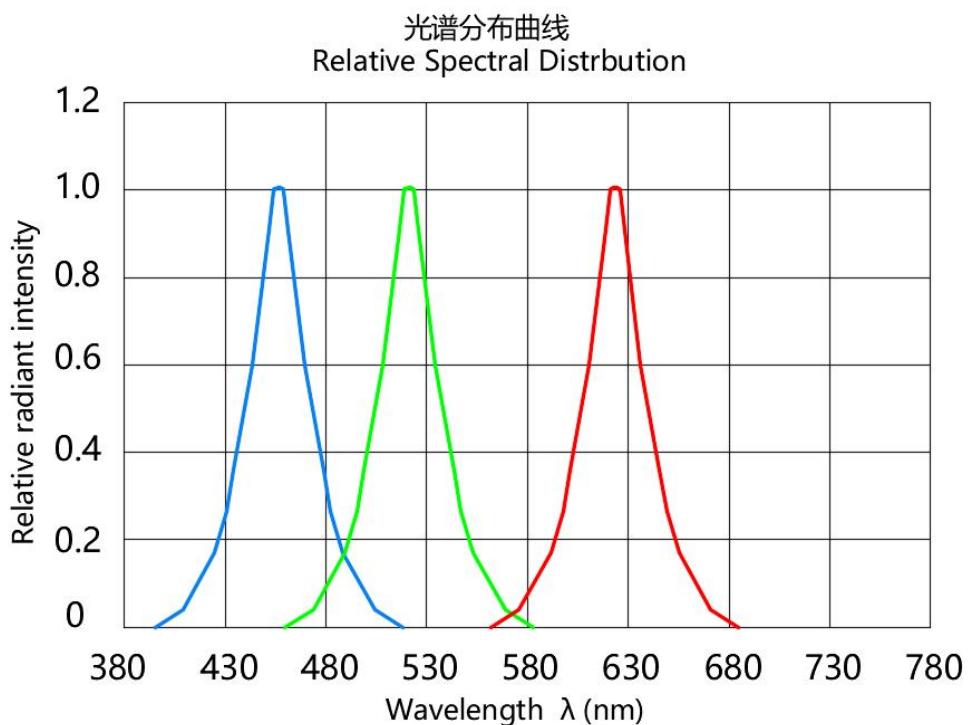
G 7	G 6	G 5	G 4	G 3	G 2	G 1	G 0	R 7	R 6	R 5	R 4	R 3	R 2	R 1	R 0	B 7	B 6	B 5	B 4	B 3	B 2	B 1	B 0
--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------

数据传输方法 Data transmission method


注：其中 D1 为 MCU 端发送的数据，D2、D3、D4 为级联电路自动整形转发的数据。

Note: D1 is the data sent by MCU, D2, D3 and D4 are the data automatically shaped and forwarded by cascade circuit.

连接方式 :



Connection mode:

芯片级联方法:Chip cascade method:

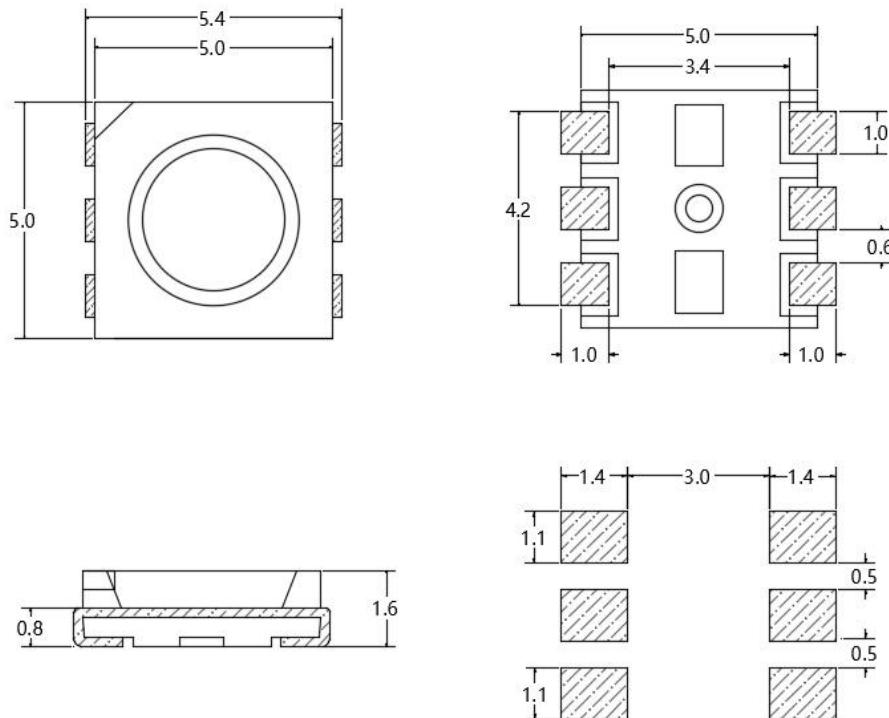
典型特性曲线

Typical Characteristics Curves

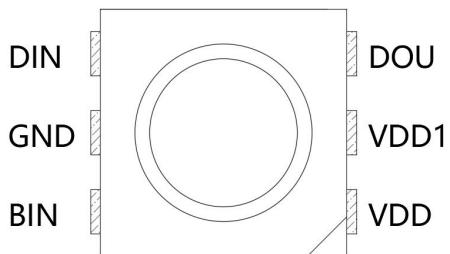
可靠性试验

Reliability Test Items And Conditions

*可靠性实验项目 Reliability Test Project


描述 Description	项目 Item	测试标准 Test criterion	测试条件 Test condition	测试时间 Test time	数量 Qty	失效数量 Fail qty
寿命测试 Life test	常温寿命测试 Life test(room temperature)	JIS7021:B4	T _a =25°C±5°C, IF=8.5mA	1000Hrs	22	0
环境测试 Ambience test	高温存储 High temperature store	JIS7021:B10 MIL-STD-202:210A MIL-STD-750:2031	T _a =85°C±5°C	1000Hrs	22	0
	低温存储 Low temperature store	JIS7021:B12	T _a =-35°C±5°C	1000Hrs	22	0
	高温高湿测试 High temperature/ humidity test	JIS7021:B11 MIL-STD-202:103D	T _a =85°C±5°C RH=85%	1000Hrs	22	0
	冷热冲击测试 Cold / Heat strike test	JIS7021:B4 MIL-STD-202:107D MIL-STD-750:1026	30min -10°C±5°C↔100°C±5°C 5min 5min	100Cycles	22	0
	冷热循环测试 Cold and heat cycle test	JIS7021:A3 MIL-STD-202:107D MIL-STD-705:105E	5min 5min 5min -35°C~25°C~85°C~35°C 30min 5min 30min 5min	100Cycles	22	0

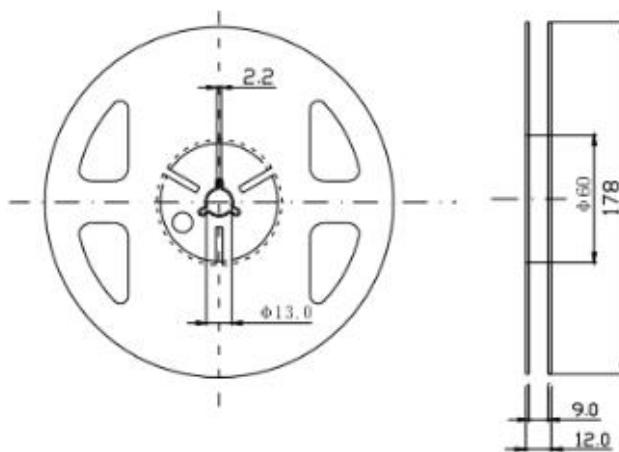
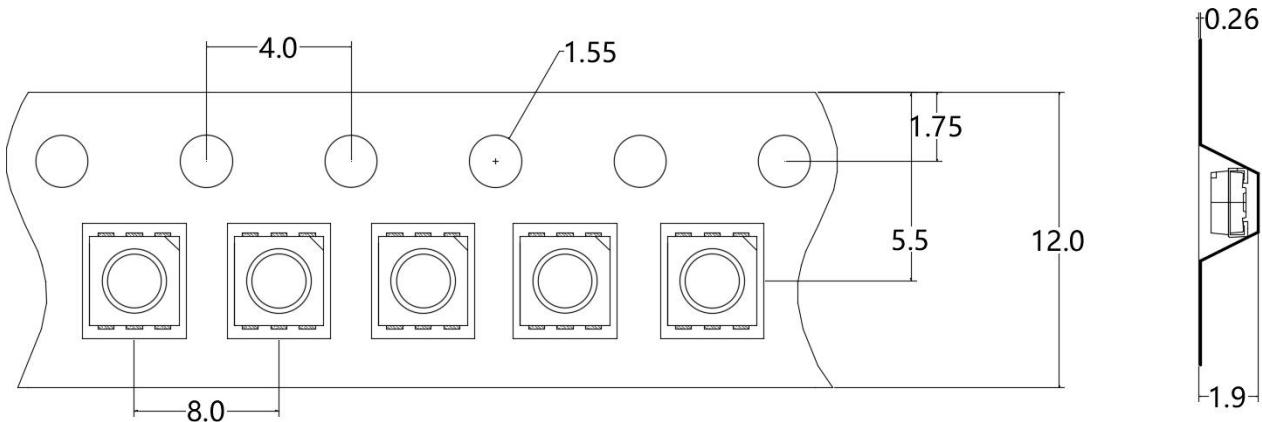
*判断标准 Judging criterion:


项目 Item	符号 Symbol	实验条件 Experiment condition	判断标准 Criteria	
			Min.	Max.
Forward Voltage 正向电压	V _F	IF=8.5mA	----	Initial Date x 1.1
Reverse Current 反向电流	I _R	V _R =5V	----	1 μ A
Luminous Intensity 发光强度	IV	IF=8.5mA	Initial Date x 0.7	----

外形尺寸

Outline Dimension

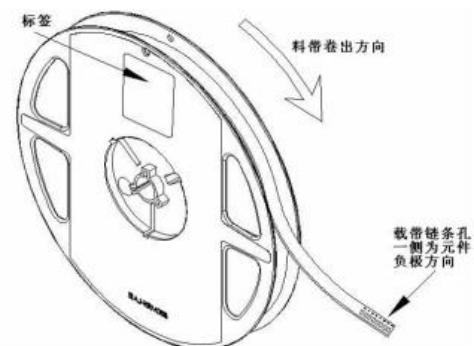
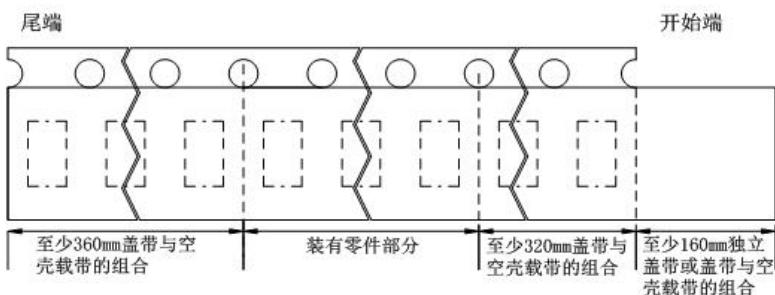
建议焊盘尺寸
Recommended Soldering Pattern



LED 引脚功能: LED pin function:

号 Pin No	符号 Symbol	管脚名 Pin name	功能描述 Function description
1	VDD1	电源	芯片电源正极线
2	VDD2	电源	芯片电源正极线
3	DOU	数据输出	信号数据输出
4	DIN	数据输入	信号数据输入
5	GND	负极	接地
6	BIN	辅助	辅助信号输入

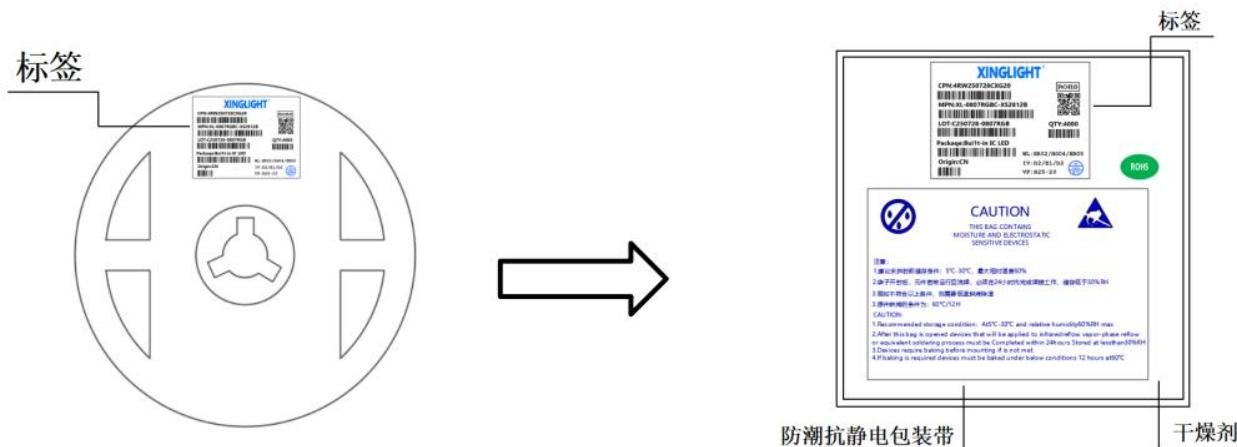
包装 (1)

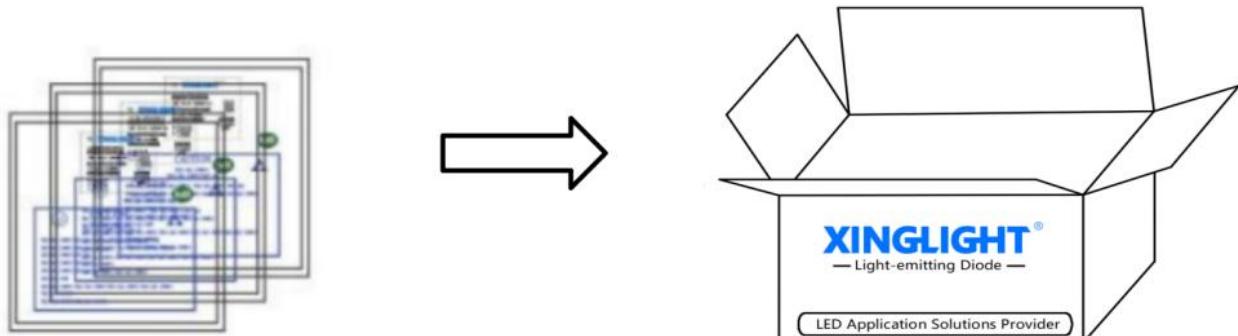
Packaging (1)



载带与圆盘尺寸 Belt and disk dimensions

注:

- 尺寸单位为毫米(mm)。
- Size unit is mm (mm).
- 尺寸公差是 ± 0.1 mm。
- The dimensional tolerance is ± 0.1 mm.


◆ 圆盘及载带卷出方向及空穴规格 Disk and carrier belt direction of roll and hole dimensions


包装 (2)

Packaging (2)

◇ 防潮抗静电包装 Moisture Proof and Antti-Electrostatic Foil Bag

◇ 外包装箱 Cardboard Box

◇ 标签说明 Label Expansion

CPN: 批号/档位

LOT: 日期/封装颜色

MPN: 型号

VF: 电压代码

WL: 波长代码

IV: 亮度代码

ORIGIN: 产地

QTY: 数量

PACKAQE: 封装

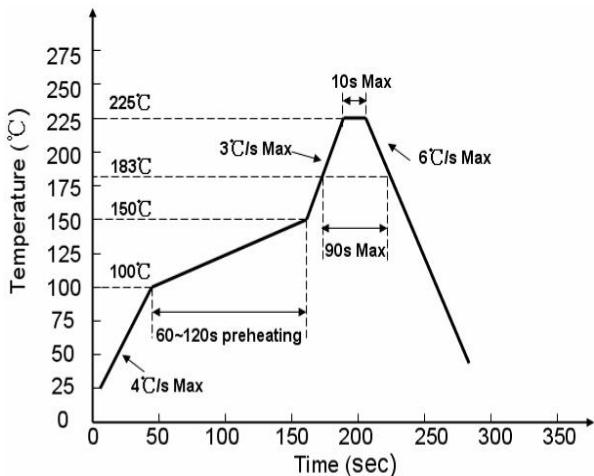
焊接指导 (1)

Guideline for Soldering (1)

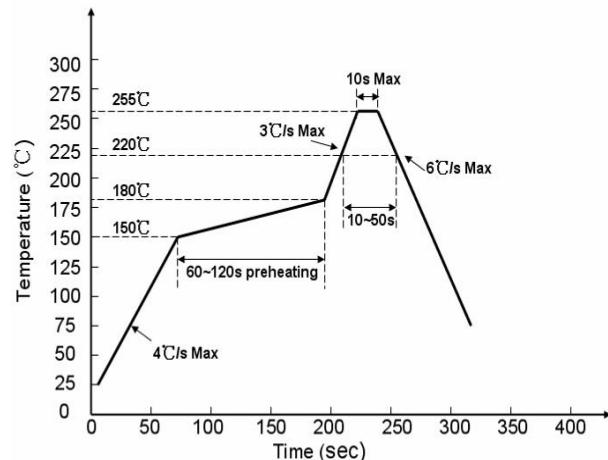
1. 使用烙铁人手焊接

Hand Soldering

只建议在修理和重工的情况下使用手工焊接；推荐使用功率低于 30W 的烙铁，焊接时烙铁的温度必须保持在 300°C 以下，且每个电极只能进行一次焊接，每次焊接的持续时间不得超过 3 秒。


人手焊接过程中的不慎操作易引起 LED 产品的损坏，应当小心谨慎。

Manual welding is recommended only for repair and heavy industry situations. A soldering iron of less than 30W is recommended to be used in Hand Soldering. Please keep the temperature of the soldering iron under 300°C while soldering. Each terminal of the LED is to go for less than 3 second and for one time only.


Be careful because the damage of the product is often started at the time of the hand soldering.

2. 回流焊接： 推荐使用以下无铅回流焊接温度图进行。

Reflow Soldering: Use the conditions shown in the under Figure of Pb -Free Reflow Soldering.

有铅制程 Lead process

无铅制程 lead free

回流焊接最多只能进行两次，二次回流焊间隔时间控制在 8H 内完成。

Reflow soldering should not be done more than two times. The interval between secondary reflow soldering should be controlled to be completed within 8H.

在回流焊接升温过程中，请不要对 LED 施加任何压力。

Stress on the LEDs should be avoided during heating in soldering process.

在焊接完成后，待产品温度下降到室温之后，再进行其他处理。

After soldering, do not deal with the product before its temperature drop down to room temperature.

产品最佳的最高焊接温度建议控制在 $240 \pm 5^{\circ}\text{C}/6\text{s}$

The recommended maximum welding temperature for the product is $240 \pm 5^{\circ}\text{C}/6\text{s}$

焊接指导 (2)

Guideline for Soldering (2)

3. 清洗:

Cleaning

在焊接后推荐使用酒精进行清洗，在温度不高于 30°C 的条件下持续 3 分钟，不高于 50°C 的条件下持续 30 秒。

使用其他类似溶剂清洗前，请先确认使用的溶剂不会对 LED 的封装和环氧树脂部分造成损伤。超声波清洗也是有效的方法，一般最大功率不应超过 300W，否则可能对 LED 造成损伤。请根据具体的情况预先测试清洗条件是否会对 LED 造成损伤。

It is recommended that alcohol be used as a solvent for cleaning after soldering. Cleaning is to go under 30°C for 3 minutes or 50°C for 30 seconds. When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the package and the resin or not.

Ultrasonic cleaning is also an effective way for cleaning. But the influence of Ultrasonic cleaning on LED depends on factors such as ultrasonic power. Generally, the ultrasonic power should not be higher than 300W. Before cleaning, a pretest should be done to confirm whether any damage to LEDs will occur.

*** 注意：**此一般指导原则并不适用于所有 PCB 设计和焊接设备的配置。具体工艺受到诸多因素的影响，请根据特定的 PCB 设计和焊接设备来确定焊接方案。

*** Note:** This general guideline may not apply to all PCB designs and configurations of all soldering equipment. The techniques in practice are influenced by many factors, it should be specialized based on the PCB designs and configurations of the soldering equipment..

使用注意事项 (1)

Precautions (1)

1. 贮存:

Storage

- 本产品使用密封防潮抗静电袋包装，并附有干燥剂，未开封的产品有三个月的保存时间。

This product is packaged in a sealed, moisture-proof, and anti-static bag, and comes with a desiccant. The shelf life of unopened products is three months.

- 开封前，产品须存放在温度不高于 30°C，湿度不高于 60%RH 的环境中。

Before opening the package, the product should be kept at 30°C or less and umidity less than 60% RH, and be used within a year.

- 开封后，产品须存放在温度不高于 30°C，湿度不高于 40%RH 的环境中，且应该在 24 小时 (1 天) 内使用完。建议工作环境为温度不高于 30°C，湿度不高于 60%RH。

After opening the package, the product should be stored at 30°C or less and humidity less than 40%RH, and be soldered within 24 hours (1 days). It is recommended that the product be operated at the workshop condition of 30°C or less and humidity less than 60%RH.

- 对于尚未焊接的 LED，如果吸湿剂或包装失效，或者产品没有符合以上有效存储条件，烘焙可以起到一定的性能恢复效果。烘焙条件：60±5°C，持续24 小时。

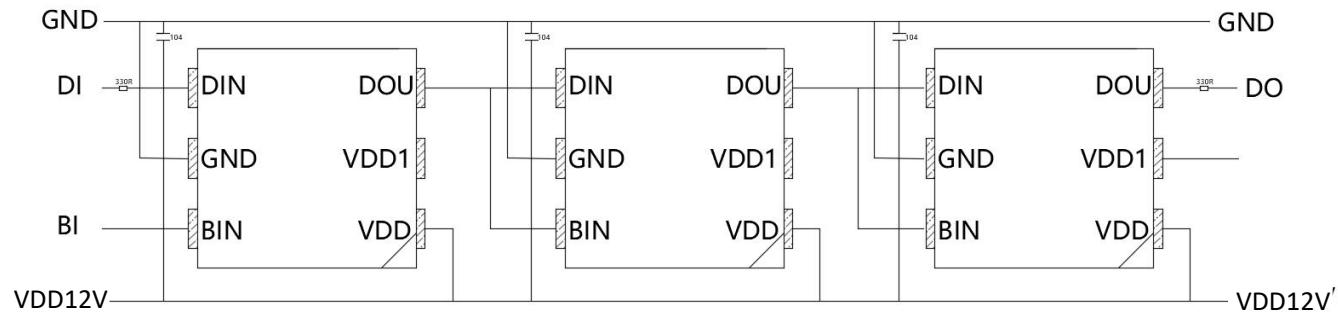
If the moisture absorbent material has fade away or the LEDs have exceeded the storage time, baking treatment should be performed based on the following condition: (60±5)°C for 24 hours.

2. 静电:

Static Electricity

静电和电涌会导致产品特性发生改变，例如正向电压降低等，如果情况严重甚至会损毁产品。所以在使用时必须采取有效的防静电措施。所有相关的设备和机器都应该正确接地，同时必须采取其他防止静电和电涌的措施。使用防静电手环，防静电垫子，防静电工作服、工作鞋、手套，防静电容器，都是有效的防止静电和电涌的措施。

Static electricity or surge voltage damages the LEDs. Damaged LEDs will show some unusual characteristic such as the forward voltage becomes lower, or the LEDs do not light at the low current. even not light.


All devices, equipment and machinery must be properly grounded. At the same time, it is recommended that wrist bands or anti-electrostatic gloves, anti-electrostatic containers be used when dealing with the LEDs.

使用注意事项 (2)

Precautions (2)

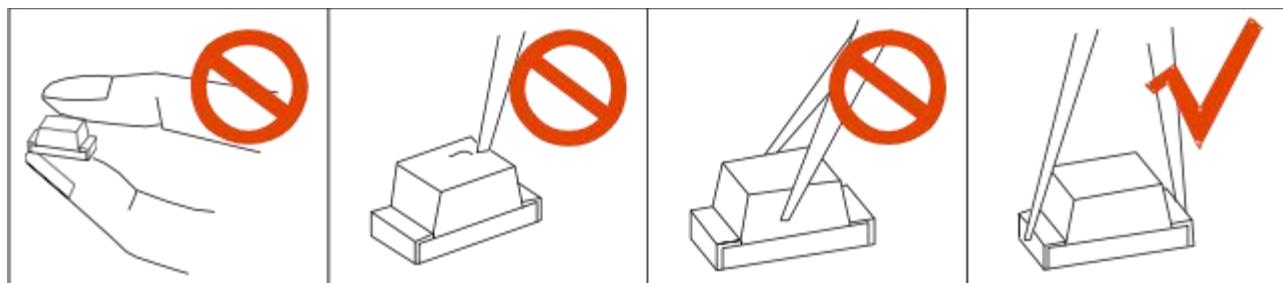
3. 设计建议:

Design Consideration

为防止产品在测试时带电插拔产生的瞬间高压导致芯片信号输入输出引脚损坏, 应该在电源引脚串接 330Ω 保护电阻。此外图中各芯片的退耦电容 $0.1\mu F$, 且走线到芯片的 VDD 和 GND 脚应尽量短, 以达到最佳的退耦效果, 稳定芯片工作, 同时需在信号输入端串接一个 330 欧的保护电阻, 此为建议应用电路, 仅供参考:

To prevent damage to the input and output pins of the chip signal caused by the instantaneous high voltage generated by live plugging and unplugging during testing, a 330Ω protective resistor should be connected in series with the power pin. In addition, the decoupling capacitor of each chip in the figure is $0.1\mu F$, and the VDD and GND pins of the wiring to the chip should be as short as possible to achieve the best decoupling effect and stabilize the chip operation. At the same time, a 330Ω protective resistor should be connected in series at the signal input terminal. This is a recommended application circuit for reference only

使用注意事项 (3)


Precautions (3)

4. 其他事项:

Others

直接用手拿取产品不但会污染封装树脂表面,也可能由于静电等因素导致产品性能的改变。过度的压力也可能直接损伤封装内部的管芯和金线,因此请勿对产品施加过度压力,特别当产品处于高温状态下,例如在回流焊接过程中。

When handling the product, touching the encapsulant with bare hands will not only contaminate its surface, but also affect on its optical characteristics. Excessive force to the encapsulant might result in catastrophic failure of the LEDs due to die breakage or wire deformation. For this reason, please do not put excessive stress on LEDs, especially when the LEDs are heated such as during Reflow Soldering.

LED 的环氧树脂封装部分相当脆弱,请勿用坚硬、尖锐的物体刮、擦封装树脂部分。在用镊子夹取的时候也应当小心注意。

The epoxy resin of encapsulant is fragile, so please avoid scratch or friction over the epoxy resin surface.

While handling the product with tweezers, do not hold by the epoxy resin, be careful.

5. 眼睛保护忠告:

Safety Advice For Human Eyes

LED 发光时,请勿直视发光光源,特别是对于一些光强较高的 LED,强光可能伤害你的眼睛。

Viewing direct to the light emitting center of the LEDs, especially those of great Luminous Intensity, will cause great hazard to human eyes. Please be careful.

规格书如有修改,不另行通知

If there are any modifications to the specification sheet, no further notice will be given